The Next Economic Paradigm

Tag: engineering

Making Money

The Ingenesist Project: Making Money

Nobel Economist Robert Solow calculated that 80% of economic growth is the result of advances in technology. This Makes sense. Technology makes us more productive.

However, GDP measures the products, not the producers. Engineers, Scientists, and Technologists are responsible for ideation, design, and implementation of new and improved technology.

Unfortunately, Engineers, Scientists and Technologists are classified as “intangibles” Intangibles are, in turn, classified as expenses to be minimized, not investment to be maximized.

Here’s the good news… 80% of the true global economy is simply hidden from view. Trillions upon trillions of dollars are sitting on the table waiting to be measured into existence. Can you see it?

The Ingenesist Project uses game theory, blockchain, and Artificial Intelligence to convert Intangible Assets into a tangible form.

Join The Ingenesist Project

Analysis

The purpose of this video is to synthesize the simplest interpretation of value and test that against prevailing economic principals. Engineers, scientists and technologists are treated as EXPENSES, let that sink in. If they are not assets, then they are LIABILITIES… full stop. This is a clear, present and vastly consequential flaw that must be addressed by someone somewhere.

Otherwise, if there is no institution willing or able to defend this flawed economic principal, then it is super-vulnerable to disruption. We need to maximize innovation, not minimize innovation. There needs to be a wholistic and systemic approach to solving problems in the world. We must head off global systemic risks. As clever and experienced as the VC community is, they cannot be expected to pick and choose winners and losers in the next economic paradigm.

There is far more ‘money to be made’ by shifting engineers, scientists, and technologists to the ASSET column of the global balance sheet.

Share this:

An Invisible Economy

An Invisible Economy: The Ingenesist Project

A firefighter is worth millions of dollars per hour preserving lives and property…  but only when there is a fire. A Fire Protection Engineer can design thousands of buildings that will never burn.

In the absence of a fire, the true value of the Scientists, Engineers, and Technologists is invisible. But the value of their economic contribution continues to persist.

What if we could measure the true value of intangible assets into present value existence. A massive new asset class would be unlocked.

The Ingenesist Project uses Game Theory, Blockchain, and Artificial Intelligence to convert intangible assets into tangible form, at scale. There is no shortage of money, only a shortage of imagination.

Join The Ingenesist Project

Analysis

The purpose of this video is to demonstrate how engineers, scientists, and technologists remove RISK from complex systems. Risk is directly correlated to “return” and, therefore, profits.

So what happens to all of that value that a single diligent engineer creates when they remove all of the risk? Is it paid to the engineer? no. Is it returned to the non-victims of the calamity averted? no. Is captured by the the banking system as some form of arbitrage? Yes, absolutely, yes.

This is the deep dark secrets of finance. Don’t let the engineers, scientists, and technologists know that they are paid 2-20% of what they are worth. They may want free stuff like healthcare, job security, or royalties, or else they’ll go build something else that pays better social dividends. Can’t have that.

Obviously the question becomes, what happens when there are no more engineers to eliminate risk? There is a tipping point and we are dangerously close to approaching it. These things are easy to measure, assess, and resolve but there needs to be an institution able to secure material facts and assert the economics of those facts.

Share this:

A Tiny Flaw

A Tiny Flaw. The Ingenesist Project

What if there was a tiny and nearly imperceptible flaw in Market Capitalism that could be easily corrected? To do so would solve many of society’s most pressing needs without disrupting the institutions upon which we depend.

Technological change must always precede economic growth. We are going about the business of civilization as if economic growth must always precede technological change. It’s like driving a car while looking through a mirror. In other words, money is not the cause of innovation. Money is the result of innovation. The implications of this tiny flaw impacts everything from Climate Change and Social Equity to Venture Capital and Global Debt. 

It started with classical economic theory. In the 1700’s economic inputs such as Land, Labor, and Capital were easy to measure. The products that resulted from these inputs were also easy to measure. However, in the 1700’s; social, creative, and intellectual inputs by humans were not so easy to measure. Accountants call them intangibles, but they are simply “invisibles”. 

Today, this is an easier problem to solve.  Ironically, technological Change has brought us new ways to measure intangible assets. All we need to do is convert them to a tangible form.  The resulting economic growth will far exceed global debt because there is no such thing as “not enough money to innovate”.  Together we can correct A Tiny Flaw   

Join the Ingenesist Project.

Analysis

This is largely the initial video in the series and the first that we published. Attention should be drawn to the idea that maybe there is a tiny flaw that can be easily corrected. Instead of trying to solve every single problem that is strangling civilization as we know it, we could solve one single problem and the other problems will solve themselves.

The question becomes: are we too vested in our misery to even consider such a possibility? Are we so narcissistic to believe that our particular problem is the one that must be solved even if it worsens someone else’s problem? Are we all expecting the “other guy” to change and that will make your world work? Good luck with that.

The flaw is no tiny, so hidden, yet so obvious that it defies the imagination. All we need to do is measure ourselves differently. Who is stopping us from doing this? nobody. What law says we can’t do this? There is none. And if we do correct the flaw, who suffers? No one.

Will we do it?

Share this:

A Knowledge Inventory System

A Knowledge Inventory System; The Ingenesist Project

Have you ever wondered why the credits at the end of a movie are printed so small and scroll by so fast? The credits are not there for your benefit. The credits exist for the benefit of the movie industry.

Film production is a highly intellectual, creative, and social enterprise. In other words, Hollywood is denominated by knowledge assets.   The rolling credits serve as a knowledge asset inventory system for all things needed to make the next movie.

Everything revolves around being on the credits or being known by people on the credits. This is how people find each other.  The rolling credits make this possible. Not unlike a blockchain, in order to cheat the system, one must alter every instance of the celluloid reel or digital file.

Engineering, science and technology are also social, creative, and intellectual industries fueled by knowledge assets. Not unlike a blockchain, engineering processes are irreversible and immutable.

When we look at a sturdy bridge, or magnificent structure, or a brilliant piece of software, there is no easy way to find the people who are responsible for a specific element of that work. The Ingenesist Project uses game theory, blockchain, and Artificial Intelligence to create a knowledge asset inventory so that Engineers, Scientists, and Technologists can find each other.

Join The Ingenesist Project

Analysis

Engineering and science have long been compared to the Arts as a creative profession. The point of this video is to demonstrate how other creative professions deal with the intangibles gap. While the Hollywood system has its own set of pros and cons, the comparison is worthwhile. Notably, the arts often compensate creators with “royalties” while engineering, science, and technology most often pay hourly wages.

In addition, there are comparably fewer barriers, silos, or human resource management hurdles to navigate for artists. They don’t attempt to reduce a 4-dimensional performance down to a 2-dimensional CV/resumé. Instead, they can submit the 4D performance as their resumé. A great deal of efficiency is retained.

Share this:

An Algorithm For Innovation

An Algorithm For Innovation; The Ingenesist Project

A useful definition allows people to identify, replicate, or measure the subject being defined.  Yet the best definition we have for Innovation is basically, “You know it when you see it”.

How can we sustain our world if we cannot even define the sole instrument of change? 

Have you ever had an epiphany? That ah-ha moment that comes from deep within… …when suddenly your knowledge about something grows exponentially within a very short period of time? Let’s call that “innovation”, where one large innovation is comprised of many smaller innovations.

In order to measure innovation, all you need to do is measure the rate of change of knowledge with respect to time. You don’t need Calculus to recognize this as an algorithm for innovation … but it helps. 

If that idea doesn’t change the world, nothing will.

Join The Ingenesist Project

Analysis

Innovation is a great mystery that does not need to be. Everyone innovates – it is necessary for survival. Yet the magic and mystique of the innovator is a cultural phenomenon that forms the foundation of tech social status. Innovation is denominated in money – if you are not flush with cash, then you are not an innovator. Only VC can be innovators due to their ability to navigate financial markets. It almost seems that the more difficult it is to identify something, greater scarcity can be assigned to it. With greater scarcity come greater value. Again, when we become vested in our own misery, progress grinds to a halt.

This is all quite counter productive.

The problems of the future will require innovation, creation, new ideas, and vast execution at an astonishing scale. In order to achieve true economic sustainability, we need to a metric to denominate true value, not propped up scarcity value.

It is relatively easy to create and measure where high rates of change are occurring in a community or society. It is then relatively easy to observe what innovations take place as a result. This isn’t exactly a unicorn farm, but you probably can’t have a unicorn without these conditions in the first place. It is then only a matter of memorializing these conditions in a tangible form.

Share this:

Dividends of Innovation

The Dividends of Innovation

Innovation is not linear  Modern civilization did not begin 10,000 years ago with 250 Trillion dollars sitting in a box somewhere in the desert.

Money was measured into existence as a function of the things that scientists, engineers, and technologists built. Innovations such as the wheel, wedge, and lever came long before the invention of International Trade Agreements Innovations in machinery, transportation and energy enabled advances in sanitation, healthcare, and computers

Yet, the wheel, wedge, and lever are more important and more widely applied than ever. Wouldn’t it make more sense if we developed a monetary system backed by the dividends of innovation rather than the gravity of debt?

The Ingenesist Project uses game theory, blockchain, and artificial intelligence to measure the true economic contribution of engineers, scientists, and technologists.

Join The Ingenesist Project

Analysis

Share this:

How It Works

How It Works; The Ingenesist Project

The Ingenesist Project Uses Game Theory, Blockchain, and Artificial Intelligence to convert intangible assets to a more tangible form.

Part One: Observe The game is based on a system of claims and validations among a population of players. 

Part Two: Measure Blockchain acts like a giant datalogger that captures time-value data of game transactions.

Part 3: Predict The Percentile Search Engine predicts the likelihood  various combinations of players would produce novel outcomes. 

These three applications acting together create a virtuous circle that converts intangible assets into a more tangible form. Join The Ingenesist Project

Analysis

In almost every video, we make the statement that The Ingenesist Project uses game theory, blockchain, and AI to make intangible assets more tangible. This sounds pretty complicated, so how do you explain it in under a minute? The audience deserves to know how we intend to deliver on the promises that we are making.

The answer to this, and almost every engineering or scientific problem, boils down to making observations, measuring outcomes, and predicting future results. The same should be true here.

We’ve also stated that engineers remove risk from complex systems. Risk assessment follows a similar sequence; first you need to identify the risk exposure, then you need predict the likelihood it will manifest, then you need to measure the consequences of the event.

The game sets things into motion, the blockchain records the motion, and the AI reads the recorded motion and predicts the next point on the curve.

So what may seem like a very complicated and jargon laden geek storm is actually an extremely simply set of tasks that almost everyone already practices in the professional lives. Why reinvent the wheel?

Share this:

Network Effects

Network Effects: The Ingenesist Project

To borrow from a famous quote:  “Uber, owns no vehicles… Google and Facebook create no content… Alibaba holds no inventory… Airbnb owns no real estate….” But they have a combined value of almost 3 Trillion dollars. This is very interesting.

Whereas most companies are priced according to strict financial performance, Network platforms provide a virtual bridge that connects people to each other. They are priced proportional to the square of the number of human connections they serve.

This is known as Metcalfe’s Law of Network Value. If network platforms create a virtual bridge connecting people, why can’t we value real bridges using Metcalfe’s law?  Why can’t we value roads, airports, buildings and all manner of engineering, scientific, and technological infrastructure as proportional to the connections they serve? 

The Ingenesist project uses game theory, blockchain, and artificial Intelligence to convert intangible assets into a more tangible form. Join The Ingenesist Project

Analysis

We often say that Engineers, Scientists, and technologists need only to measure themselves differently in order to become “more tangible”. Most people’s eyes glaze over as if we’re living in some fantasy world. This video demonstrates that principal exactly as it happens with network platforms that are popping up everywhere around us. Really, we’re not making this up.

Metcalfe’s law arose from the telecommunications industry to measure the utility of telephone connections. The value of the network grows exponentially with the number of points in contact. Let’s start by saying that telephone networks themselves are a creation of engineering and scientific professions.

The engineering value of a bridge is equal to it’s replacement cost – so that’s what they pay engineers to create one. However, the economic value of the bridge includes every transaction, truck delivery, soccer game, doctor appointment, and math class that resulted from the ability for 10,000 people per day to cross the river.

Facebook, Google, Alibaba, AirBnB, et al, could not exist if they were valued according to their replacement cost. Imagine what amazing works of engineering, science, and innovation are non-existant today only because it is valued incorrectly.

Share this:

Risk And Return

Risk and Return

As the saying goes, money makes the World go around. This may not be entirely true.

Where risk is high, the cost of money is high. Where risk is low, the cost of money is low. Engineers, scientists, and technologists specialize in removing risk from complex systems.  So, why is there never enough money to mitigate the world’s most pressing risks?

Fortunately, all we need to do is reorganize engineers, scientists, and technologists and the money will surely follow

The Ingenesist Project uses game theory, blockchain technology, and Artificial Intelligence to reorganize the engineering and scientific professions. 

Join The Ingenesist Project

Analysis

This video poses a legitimate question. If there is money to be made by mitigating risk, why are Engineers, Scientists, and technologists classified as expenses (liabilities), and not assets on global balance sheets?

It’s amazing how vested we are in this staggering little flaw in market Capitalism.

Key Phrase: Risk and Return

Share this:

The Innovation Standard

The Innovation Standard: The Ingenesist Project

Solving the problems of the future will require humans to innovate at an astonishing rate… … far greater than anything our existing economic system can support. In order to achieve this, there must be a fundamental shift in how knowledge assets are measured, curated, and exchanged.

Today, a traditional bank distributes money backed by your promise of FUTURE productivity. Innovation is also a promise backed by FUTURE productivity. Two currencies backed by the same underlying asset are readily convertible.

In the future, an Innovation Bank, would issue currency backed directly by the true value of innovation. All we need to do is measure ourselves differently. 

The Ingenesist Project uses game theory, blockchain, and Artificial Intelligence to convert intangible assets into a more tangible form.

Join The Ingenesist Project

Analysis

The Innovation Standard is a reference to the Gold Standard or the Debt Standard, or the Oil Standard, etc. Whatever the standard, it needs to represent human productivity or else nobody would work in exchange for it (think about that for a sec).

The problems that face the world are global and they are systemic. That means that free markets technically don’t exist and the next thing that needs to be produced is the thing that society needs. Sure everyone wants a new Lambo, but it’s not very useful if the roads are too rough to drive it. Sure.Bitcoin is awesome but it’s contingent on a reliable energy grid. Sure, I love AI and much as the next geek but who’s going to read my content if they lack education to act on it?

Money as we know it just does not move fast enough. It does not represent the true productivity of Moms and Dads, soccer coaches, engineers, Scientists, teachers, and event organizers. Money needs to be produced as thenet sum of productive human behaviors. People know what problem needs to be solved next and if you give them the tools to fix things, they will.

Share this:

The Law of Nurture

Competition is one way of arriving at the optimal solution to a problem. Some call it the “Law of Nature”, survival of the fittest – where the  final score can only be One to Zero. Unfortunately, in order to feed the winner, we must cultivate suitable losers.  Evolution is slow and inefficient as a business optimization tool.   

The laws of Nature provide infinitely more examples of collaboration than competition.  Even if one player does not win today, their capacity to innovate remains to continuously improve the game for everyone later … if we let them. 

The Ingenesist Project uses game theory, blockchain, and artificial intelligence to convert intangible assets into a more tangible form.   Join The Ingenesist Project

Analysis:

This video acknowledges the value of competition as a solution optimization tool. So competition is not being called into question. However, a different problem involves preserving the knowledge, innovation, and wisdom that was created in the act of competition so that they can be developed in future or tangential problem solving environments.

Economics is the science of incentives which invariably invokes the discipline of game theory. we do have complete control over how a game is played, how players are preserved (or destroyed) and how equity is distributed. As such, we have complete control over the sustainability of the game which is ultimately in the best interest of everyone.

The conclusion is that a game which maximizes the health and welfare of the players ultimately maximizes the value of the game.

Share this:

A Virtuous Circle

A Virtuous Circle:

A bank won’t lend money to a project that is not insured. An insurance company will not underwrite a project that is not properly engineered. Engineering projects need to be financed to cover the cost of design and construction.

This is the Virtuous Circle of economic development. If any part of this cycle is broken, incomplete or corrupted, economic development fails.  

Financial institutions simply issue paper receipts called “Money” to represent the actual things that engineers, scientists, and technologists create.

Money is, in fact, the intangible asset and engineering is the tangible asset! We’ve gotten it backwards.

When a virtuous circle reverses itself, it becomes a vicious circle. This is where we are today Fortunately, this is an easier problem to solve. The Ingenesist Project uses Game Theory, Blockchain, and Artificial Intelligence to reverse this vicious circle. 

Join The Ingenesist Project.

Analysis:

The purpose of this video is to introduce the big picture of how the Innovation Bank will integrate with existing financial networks to make the production cycle more efficient and more responsive to systemic risk.

The point of this video is to isolate the idea that our global economy is an interrelated system with 3 critical components that must be integrated and operating at peak efficiency in order for the economy to serve global citizens equitably.

The challenges of the future will require humans to innovate at an astonishing rate – far more rapidly than our current financial system can support. There is no way that Venture Capital – our current “best bet” – can respond to the speed, breadth, and depth of technological change.

The problem ahead is systemic risk. It is not possible for a collection of competing VC to pick the winners and the losers of the next economic paradigm. Unintentionally, the the VC system may cause more damage than good.

This idea is useful for when we introduce the game, blockchain, and AI components – the blockchain serves as a check valve that allows the virtuous circle to spin in only one direction. The game mechanics provide the energy to keep the virtuous circle spinning in the right direction, Augmented Intelligence will help identify what components of the system are operating optimally so that innovation can be applied correctly.

Share this:

Decentralization Of Engineering, Science, and Technology

Decentralization is the rallying cry of the Blockchain Movement.

Few people realize that the Science, Engineering, and Technology professions are already decentralized. Unlike Banking and Finance, there are no all-powerful incumbents that must be vanquished. And the laws of Nature already apply to everyone.

Instead, Scientists, Engineers, and Technologists are contained by innumerable silos that have little to do with the Natural Laws  We are segregated by jurisdiction, academia, ontology, corporations, politics, Trade Groups, Societies, international borders, and much more.

We represent 5% of the workforce but are responsible for 80% of economic growth. But collectively, we are weak, disorganized and powerless to prioritize the needs of our World. The only thing standing in our way, is ourselves. This is a much different problem than decentralization.

The Ingenesist Project uses Game Theory, Blockchain and Artificial Intelligence to remove the silos that divide us.

Analysis:

The single point of this video was to introduce the distinction that a centralized institution and a collection of compartmentalized institutions may have similar characteristics to the participants, but are not the same thing. The former is far more difficult to disrupt while the latter is entirely vulnerable to disruption. This represents a huge opportunity for those who can see the distinction.

This idea plays a central role in the execution of The Innovation Bank. Where many see a stone wall of resistance to change, there may actually exists a paper veneer.

Share this:

A Tale From The Crypto

Have you ever wondered why a soccer goal has a net? The purpose of the net is to provide a visual contrast so that 50,000 observers can immediately reach a consensus that something very important has happened. 

After that, a digital token is awarded to the team that scored a goal.  The digital token also secures valuable business intelligence like game strategy, player stats, league standings, revenue, and everything else.

However,  the consensus is by far the most important part.   With the consensus, a player can make a lot of money.  Without the consensus, they are invisible.  With the consensus, the community can invest in a new stadium. Without the consensus, we can only play at the school yard. With the consensus, the economy flourishes. Without the consensus, it fails. 

Lots of crypto projects have these same pieces. But mostly, they are mixed up.  The Ingenesist Project uses Game Theory, Blockchain, and Artificial Intelligence to secure community consensus.

Join The Ingenesist Project

Share this:

The Innovation Bank Project Overview

The Innovation Bank applies to All Branches of the STEM professions

Image by Gerd Altmann from Pixabay

The Innovation Bank is an autonomous network platform applicable to all branches of technical services enterprise. The platform is governed by game theory, actuarial math, and blockchain technology. The purpose is to capitalizing the STEM professions.

The Innovation Bank Project Overview

The objective is to reward individual practitioners to establish physical facts in collaboration with other practitioners. Knowledge, innovation, and wisdom may be discerned from these interactions. Where such metrics exist, intangible “in-situ” knowledge assets may then be capitalized in a manner analogous to how tangible assets are capitalized in the existing economic system.

Past research has demonstrated individual components of the Innovation Bank within various for-profit enterprise settings. This current effort is unique in its attempt to integrate these components in an autonomous public network.

Several factors need to be taken into consideration:

Engineering is an essential industry – it is essential that the Innovation Bank is complementary rather than disruptive to existing institutions and operations.

All STEM professionals and practitioners are unified and enabled for cross-discipline interaction.

Practitioners are economically compensated within the platform for their contributions to the Innovation Bank. Compensation is proportional to the value of the contribution.

Practitioners own, control and hold title to their identification, and thus, their specific transaction records.

Specific Outcomes:

The initial funding for The Innovation Bank will result in the production of a minimum viable product comprised of an operational native blockchain with decentralized governance, algorithmic token allocation, and database auditing system (block explorer). These outcomes will be suitable for research, analysis, development and future growth within the professional and academic STEM communities. This test bed will allow us to develop means, methods, and metrics for advancing the above considerations.

Intellectual Merit:

The purpose of the Innovation bank is to unify the STEM professionals in society at large. Typically, STEM professionals are segmented by institutions with mismatched ontologies, competitive restraints, or regulatory limitations. While such hierarchical arrangements were well-serving in earlier times, new tools exist allowing network platforms to efficiently deliver value at speed, and at scale.

The core activity of the Innovation Bank is to develop worthy claims such that a qualified validator would be willing to be permanently and immutably associated with the claimant. This union forms a node with two branches for which each would be compensated in proportion to their total stake in the system. A network graph is thus formed from the interconnectivity of aggregate nodes and branches.

The dominant game strategy for each individual would be to allocate knowledge resources to where they are needed most rather than where profits are most assured. Financial value is derived from the dynamic metadata embedded in the aggregate network yielding business intelligence which would command a premium over static non-validated data.

Broader Impacts:

Economic growth is contingent on technological change – this is the exclusive domain of STEM professionals and practitioners. There is currently no reliable way to directly measure the impact of technological change on economic growth. Pricing and allocation are often irrational. Engineers, scientists, technologists, and mathematicians, serve to remove risk from complex systems ranging from consumer products to public infrastructure and the natural environment.

The Implications of the Innovation Bank includes the reduction of systemic risks and improved allocation of natural and intellectual resources. In essence, The Innovation Bank will gradually replace Consumption Capitalism with “Preservation Capitalism”. The introduction of a new risk-backed asset class would amplify the missions of existing institutions such as universities, corporations, finance, insurance, and government.

Given a game that everyone can potentially win, universal engagement in STEM education and STEM applications would become a dominant social policy strategy. More information can be found at The Ingenesist Project. Please contact us for more information regarding The Innovation Bank Project Overview or please read the the following paper:

The Innovation Bank; Blockchain Technology and the Decentralization of Engineering Professions

Share this:

The Return of The Ingenesist Project

After about 4 years of not posting to this site, I have decided to return to the original ideas that resulted in so much innovation in this space. For a quick review, the term “Ingenesist” is derived from the Latin word for Engineer – A Maker of Useful Things.

The TIP archives found here include almost 600 blog posts (site map) approaching 1/2 million words. You’ll find the original thesis for the international mobility of engineers under NAFTA between US, Canada, and Mexico. That project involved 6 universities, the California Board of Professional Engineers, The National Council of Examiners for Engineers and Surveyors, and the National Society of Professional Engineers – and with the cooperation and support of CETYS University, the Baja California State Government, and over 250 Engineers from Mexico who presented the US Engineering Board exams.

That work was further developed at the Boeing Commercial Aircraft Company and published at the Boeing Technical Excellence series of conferences by their Technical Fellowship. From this effort, TIP developed The Innovation Bank that would match most worthy knowledge surplus to most worthy knowledge deficit to form an internal market (network) for knowledge transfer. That work is memorialized in an old 2007 Patent Application

Later, TIP co-founded Social Flights – a ride sharing service for private jets. The innovation was our ability to predict most likely passengers and match them with most likely seats available on private aircraft. Supply and demand were both dynamic. Keep in mind that this was before Uber and we were acting within a highly regulated industry. Ultimately Social Flights was acquired.

TIP developed three key innovations:

The Value Game: An economic game where multiple self-interested agents must share a common asset. Their motivation and incentive would be to preserve the asset rather than consume the asset. This was supposed to simulate a sustainable economy such as what is desperately needed for our planet. The Value Game originated at Boeing and was tested with Social Flights and successfully deployed in several remodeling projects for condominium associations (shares asset communities)

The WIKiD Tools Algorithm. WIKiD Tools creates a mathematical relationship between (viewed backwards) Data, information, Knowledge, Innovation, and Wisdom. WIKiD tools is useful when you can’t measure something like innovation directly, you could measure a derivative such as the “rate of change in knowledge” as a proxy. In this way,the richness of Wisdom, Information, Knowledge, information, and Data can be more predictable.

Curiosumé is a combination of the words Curate and Resumé. The idea behind curiosumé is to convert the CV or Resumé to a form of code that can be overlaid on other information databases such as Wikipedia, Amazon ontology, even the Library of Congress. This allows us to measure intangible assets as they act in a community.

Then Came Blockchain:

We stopped publishing to The Ingenesist Project in 2016 in order to apply TIP innovations to emerging technologies such as Social Media, Blockchain, AI, etc. It appeared that the decentralization of the engineering profession would be an important step in achieving the original goals of sustainable global enterprise. During this time, I also started a small engineering consulting firm called CoEngineers, PLLC that served a traditional local market bringing engineering services to a retail clientele. CoEngineers, PLLC helped pay the bills while also serving as a sandbox for testing and developing TIP Innovations. Our first entry into blockchain was the creation of a token called Quant on the BitShares Blockchain.

SIBOS, NSPE Task Force, and National Association of Insurance Commisioners: Collectively each of these organizations represent the Banking Industry, The Insurance Industry, and the Engineering Profession. TIP published 3 whitepapers that became the basis for the next iteration. It was noted that each of these industries trade an invisible currency called Risk. It was found that TIP methodologies were better described by actuarial math (probabilities) rather than interest laden monetary metrics. This 3-way association became the genesis of the Insurance / Engineering Blockchain Consortium. This was later changed to the Integrated Engineering Blockchain Consortium or IEBC.

IEBC: Over the course of several years, IEBC was the umbrella organization for 150 engineers, scientists, and business persons who advanced the idea of a decentralized engineering network to mesh with the banking and insurance environments. IEBC published numerous seminal documents and spoke at dozens of industry conferences. The two main achievements were to publish a whitepaper with detailed specifications for a blockchain strategy that would accommodate all prior TIP innovations. The IEBC team built a prototype blockchain by cloning an existing successful chain and modifying it to suit MVP demonstration. IEBC ultimately ramped down for lack of funding. But everything we learned is now open for iteration.

Where to re-Start? TIP has always been a place where ideas are formed and implemented either by ourselves or by others. Many TIP Ideas survive to this day in the many hundreds of engineers and scientists who have participated in the conversations, the start-ups, the publications, lectures, and webinars over the last 15-20 years. We can see many past TIP contributors advancing in their careers, businesses, and leadership roles.

There is something that binds people to this network – it has to do with the underlying belief that Makers Of Useful Things are the cause, not the effect, of sound and sustainable economic activity. The flaw of market capitalism has the world operating in a mirror image of the economy that was supposed to happen. The solution is more about perception than it is about revolution.

Share this:

The Big Bang of Modern Globalization

The early 1990’s saw the end of the Cold War,  spectacular advances in computers, the Evolution of the Internet, and a new world order fueled by commerce instead of warfare. Upon this landscape,  NAFTA is considered to be the Big Bang of modern Globalization. What is not often considered is how NAFTA, for better or worse, was to influence every free trade agreement that followed.  The Secret of NAFTA was the failure of engineering mobility and therefore the failure of real economic development.

What made NAFTA unique was the provision for the trade of services specifically, financial services and professional engineering services.  The former succeeded while the latter largely failed.  Herein lies the flaw that needs to be corrected.

Many people remember NAFTA as that giant sucking sound of US jobs going South of the Boarder. When I was a young and idealistic engineer I saw NAFTA as Mexico needing everything that US engineers provided. With the free trade of financial services, engineering projects could be capitalized – this had to be huge.

Intangible Assets are the REAL tangible assets

I found myself in Mexico in 1994 taking what was supposed to be a temporary assignment in a small engineering department of a private university right over the California border – I ended up staying 3 years.  This turned out to be the most profound experience of my professional career.

What struck me the hardest was how intelligent, resourceful, and creative the Mexican engineering students were.  By contrast, I saw the general stage of development of Mexico – at the time it was still being described by the Cold War label as a “Third World Country”.   Soon after, I witnessed a tragic devaluation of the Mexican Peso, where the local currency lost about 1/2 of it’s value against the dollar seemingly overnight.  To observe the reaction of the Mexican citizens, was simply indescribable.  I wondered how could money and jobs just disappear when there was so much work to do and so many people who could do it?

I decided that I’d like to test the Mexican engineering students against a known standard.  I developed a program that prepared a select group of 12 students to take the NCEES EIT examination (The Board Exams for US Engineers).  Their success rate was exceptional; 11 out of 12 passed.   Over the next two years we sent a random sample of over 250 Mexican engineers to the US Exams with a success rate comparable to the US engineers pass ratio.  If the engineers were equally intelligent and equally educated as US Engineers, then something else must be happening here.

Cause and Effect

I would later learn that economic development is a hugely complex subject.  However, at the time, I was deeply intrigued by the following idea:

If you throw economic growth (money) at a country are you guaranteed increased productivity?

The answer is NO. 

However, if you throw productivity at a country, are you guaranteed economic growth?  

The answer is YES.

Herein lays a tiny and nearly imperceptible flaw in NAFTA that needs to be corrected.

Technological change MUST precede economic growth. Economic Growth cannot precede technological change. 

We have gotten it backwards

Banks and and associated securities exists for the sole purpose of creating money to fund innovation. The REAL economy lives where the fact of innovation creates the REAL money.  This is the domain of Engineering, therefore, this is the direction that The Ingenesist Project has and will continue to focus on.

 

Share this:

Bitcoin Protocol Impact on the Engineering Profession

I will be delivering a very serious presentation at the Nation Society of Professional Engineers Annual Conference on July 2015 in Seattle.  My point will be crystal clear. Money must represent human productivity. Period. The base layer of any economy is a nation’s infrastructure.  As such, any new Cryptocurrency MUST be associated with the engineering domain otherwise it is equal to any other financial derivative whose value is also ultimately dependent on the value of engineered infrastructure.

It’s time to stop the poetry and time start building a civilization we can all be proud of.  It is time to build Curiosumé

Abstract: 

The Bitcoin Protocol and Future Currency Impact on the Engineering Profession

In a Wall Street Journal essay, two authors wrote, “The digital currency known as bitcoin is only six years old, and many of its critics are already declaring it dead. But such dire predictions miss a far more important point: Whether bitcoin survives or not, the technology underlying it is here to stay.” This session will cover what digital currency means for the engineering profession.

“Decentralization” is a term being applied to platforms that use the Blockchain Protocol pioneered by Satoshi Nakamoto, the inventor of Bitcoin.  As a cryptographic currency, Bitcoin remains problematic.  However, as an algorithmic protocol, blockchain technology will enable society to cheaply perform common business processes that are now controlled by institutions such as banks, insurance companies, corporations, government, etc.  Today, rapidly emerging platforms are under development to bring “smart contracts” (algorithms based on blockchain technology) into the mainstream.  

An important and essential variant of smart contracts is called an “Adjudicated Smart Contract” that requires an independent 3rd party adjudicator that would “flip the switch” on algorithmic agreements in finance, insurance, and decisions of governance.  There is a staggering opportunity ahead for the engineering profession to position itself for the role of the adjudicator in a wide variety of important and high value transactions.  The caveat is that we too must change the way that we organize ourselves.   

This presentation, Decentralizing the Engineering Profession, begins with the failure of the NAFTA MRD followed by an introduction to blockchain technologies, and ending with specifications on how our profession can jump to the top of the value chain in the era of Social Capitalism – if, and only if, [the engineering profession] can choose to change.  

Date:

Thursday, July 16, 2015
Start Time: 3:15 pm
End Time: 4:15 pm
Number of PDHs: 1
Speaker: Dan Robles, P.E.
REF:

Bitcoin Protocol Impact on the Engineering Profession

Share this:

The Mother of All Hedge Funds

Money is supposed to represent human productivity; otherwise nobody would work for it (think about that for a second).

Today, money is created from future productivity in the form of debt;  when you take a loan, money is created out of thin air and posted as an asset on the banks ledger.  Unfortunately, the money required to pay interest is never created at all, which drives eternal scarcity.

What Happens Next:

Through the miracles of the fractional reserve system and high finance; money gets thrown into a blender where it is then divorced from the productivity of those who create it, and is converted to exotic financial instruments that bet for or against the future productivity of the future productivity of the future productivity, etc – in both Calculus and Finance, these are called derivatives.

Why does it still work?

So the question becomes; if money does not represent productivity, then why do people still work for it? Well, there is no other alternative to money as we know it.

Then came … and went … Bitcoin;

Bitcoin is all the rage because it behaved sort of like a currency – it had many of the desirable characteristics for the storage, exchange, and unit of account for value. But something about it didn’t sit right with society in general – most people aren’t willing to work in exchange for it.

Bitcoin has 3 fatal flaws:

  1. Bitcoin does not represent human productivity.
  2. The total available Bitcoins were highly concentrated among a very few people.
  3. Bitcoin are speculative in value.

Many words have been committed to these topics so I’ll leave a deeper understanding to the reader to research on their own.  However, we can now ask the question;

What if a virtual currency could be designed that does represent human productivity, is widely distributed among the users, and empowered by those who interact with it?

 

Consider an Engineering Backed Currency:

Let’s consider an engineering backed currency and the existing institution of the National Society of Professional Engineers (NSPE)

 Condition 1: Engineering works increase human productivity in the form of roads, bridges, machinery, energy, clean water, sanitation, and generalized problem solving.  A currency backed by engineering would invariably be backed by human productivity thereby satisfying condition #1.

Condition 2:  Suppose that upon paying their 300 dollar dues to the National Society of Professional Engineers, the NSPE Knowledge Bank issues 3000 NSPE Bucks, a virtual currency, to the member so that any member can trade with any other member for the purposes of learning, teaching, and collaboration (don’t worry yet about the technical challenges of doing this).

If any member gets stuck on a project, or they need to understand new technologies, or are looking for complementary knowledge, they can compensate another engineer in the NSPE Technical Network using NSPE Bucks.  Young engineers can teach seniors about new tech, social media, hot mobile apps, and seniors can teach young engineers about nuances of engineering practice, etc., all in exchange for NSPE-Bucks.  NSPE bucks will become evenly distributed thereby satisfying condition #2.

 Condition 3: The NSPE Bucks act as a form of insurance.  If an engineer gets stuck on a project or needs a review of their work or intersects another discipline, they can get rapid and effective support across a vast network of knowledge assets in the profession.  An engineer may be empowered to interact with their peers and innovate in their careers knowing that the wisdom and experience of their peers is mutually accessible.  As such, condition number 3 is met.

Hold on to your seat – this last point will blow you away:

Innovation is the domain of engineering – the two words are synonymous.  People innovate today for the purpose of increasing productivity in the future.  Remember, debt is also a currency backed by future productivity.  Therefore, when you have two currencies that are backed by the EXACT same underlying asset, they are fully convertible on an open exchange.  So NSPE bucks can be easily converted back to dollars or simply traded broadly in a market.

The Mother of All Hedge Funds

As the dollar weakens in scarcity, the NSPE Buck will strengthen in abundance, value will be preserved in the works of engineering that are created. In fact, an engineering backed currency would hedge the dollar as it weaken in it’s ability to maintain infrastructure, build schools, solve climate problems, and provide for the safety health and welfare of people and property.

There is no shortage of work to do and there is no shortage of innovation – there is only a shortage of money.  If Banks can print money out of thin air, why can’t engineers?

 

 

 

 

Share this:

Powered by WordPress & Theme by Anders Norén

css.php